
What is infinity divided by infinity? - Mathematics Stack Exchange
Aug 11, 2012 · I know that $\\infty/\\infty$ is not generally defined. However, if we have 2 equal infinities divided by each other, would it be 1? if we have an infinity divided by another half-as-big infinity, for
Proof of infinite monkey theorem. - Mathematics Stack Exchange
Apr 24, 2015 · The infinite monkey theorem states that if you have an infinite number of monkeys each hitting keys at random on typewriter keyboards then, with probability 1, one of them will type the …
calculus - Infinite Geometric Series Formula Derivation - Mathematics ...
Infinite Geometric Series Formula Derivation Ask Question Asked 12 years, 7 months ago Modified 4 years, 10 months ago
elementary set theory - What is the definition for an infinite set ...
Dec 3, 2020 · However, while Dedekind-infinite implies your notion even without the Axiom of Choice, your definition does not imply Dedekind-infinite if we do not have the Axiom of Choice at hand: your …
infinity - What is the definition of an infinite sequence ...
May 12, 2024 · Except for $0$ every element in this sequence has both a next and previous element. However, we have an infinite amount of elements between $0$ and $\omega$, which makes it …
One divided by Infinity? - Mathematics Stack Exchange
Jul 15, 2015 · Infinite decimals are introduced very loosely in secondary education and the subtleties are not always fully grasped until arriving at university. By the way, there is a group of very strict …
How can Cyclic groups be infinite - Mathematics Stack Exchange
Oct 4, 2020 · I am a little confused about how a cyclic group can be infinite. To provide an example, look at $\\langle 1\\rangle$ under the binary operation of addition. You can never make any negative …
If $S$ is an infinite $\sigma$ algebra on $X$ then $S$ is not countable
6 Show that if a $\sigma$-algebra is infinite, that it contains a countably infinite collection of disjoint subsets. An immediate consequence is that the $\sigma$-algebra is uncountable.
How can I define $e^x$ as the value of infinite series?
Are you familiar with Taylor series? Series solutions of differential equations at regular points? From what foundation/background are you approaching this problem?
linear algebra - Invertibility of infinite-dimensional matrix ...
May 3, 2020 · As far as I can tell, the "infinite matrix" representation of a linear operator is not that popular, especially in non-Hilbert contexts. There are many technicalities to address, as Jesko …